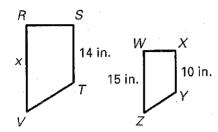
Similarity and Measurement

Goal: Find unknown side lengths of similar figures.


Example 1

Finding an Unknown Side Length in Similar Figures

Given RSTV \sim WXYZ, find VR.

Solution

Use the ratios of the lengths of corresponding sides to write a proportion involving the unknown length, VR.

$$\frac{XY}{ST} = \frac{WZ}{VV}$$

$$\frac{10}{15} = \frac{14}{X}$$

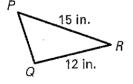
$$\frac{10x = 210}{x = 21}$$

Write proportion involving VR.

Substitute.

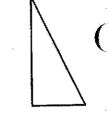
Cross products property

Multiply.


Divide each side by .

Answer: The length of \overline{VR} is $\boxed{21}$ inches.

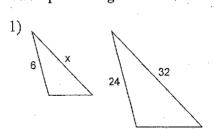
Checkpoint

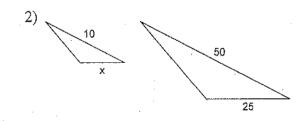

1. Given
$$\triangle PQR \sim \triangle VTS$$
, find TS .

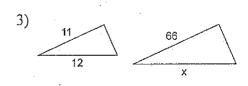
$$\frac{SV}{PR} = \frac{ST}{QR}$$
 $\frac{10}{15} = \frac{X}{12}$
 $\frac{15x = 120}{15}$
 $\frac{15x = 8}{15}$

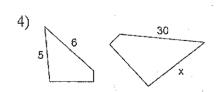
$$s \underbrace{x}_{10 \text{ in.}}^{x}$$

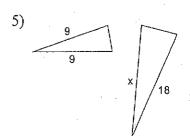
Height At a certain time of day, a person who is 6 feet tall casts a 3-foot shadow. At the same time, a tree casts an 11-foot shadow. The triangles formed are similar. Find the height of the tree.


Solution


Write and solve a proportion to find the height h of the tree.


Answer: The tree has a height of 2 feet.


GUIDED PRACTICE


Each pair of figures is similar. Find the missing side.

